Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


This paper discusses an unified method of the tracking and balancing controls for leg-wheel hybrid structures in an effort to improve the mobility over hard, flat surfaces. Preliminarily, we analyzed the contact constraint to formulate a dynamically decoupled model in the task space. Then, inequality constraints were determined to restrict the dynamic behavior of the system within the given bounds for the dynamic stability and the actuator saturation. The inequality constraints were applied to the reference control input that was designed for the mechanism to traverse the desired trajectories without the constraints. To find the constrained control input, a quadratic objective function was proposed to minimize the modification error of the control inputs. We tested the effectiveness of the proposed algorithm by comparing simulation results with our previous research.

Questions and Answers

You need to be logged in to be able to post here.