Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

In this paper, we present a versatile framework to enable autonomous flights of a Micro Aerial Vehicle (MAV) which has only slow, noisy, delayed and possibly arbitrar- ily scaled measurements available. Using such measurements directly for position control would be practically impossible as MAVs exhibit great agility in motion. In addition, these measurements often come from a selection of different onboard sensors, hence accurate calibration is crucial to the robustness of the estimation processes. Here, we address these problems using an EKF formulation which fuses these measurements with inertial sensors. Compared to existing approaches we do not only estimate pose and velocity of the MAV, but also states such as sensor biases, scale of the position estimate and self (inter- sensor) calibration in real-time. Furthermore, we show that it is possible to obtain a yaw estimate from position measurements only. We demonstrate that the proposed framework is capable of running entirely onboard a MAV boosting its autonomy, performing state prediction at the rate of 1 kHz. Our results illustrate that this approach is able to handle measurement delays (up to 500ms), noise (std. deviation up to 20 cm) and slow update rates (as low as 1 Hz) while dynamic maneuvers are still possible. We present a detailed quantitative performance evaluation of the real system under the influence of different disturbance parameters and different sensor setups to highlight the versatility of our approach

Questions and Answers

You need to be logged in to be able to post here.