-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Most successful Entity Linking (EL) methods aim to link mentions to their referent entities in a structured Knowledge Base (KB) by comparing their respective contexts, often using similarity measures. While the KB structure is given, current methods have suffered from impoverished information representations on the mention side. In this paper, we demonstrate the effectiveness of Abstract Meaning Representation (AMR) (Banarescu et al., 2013) to select high quality sets of entity ``collaborators'' to feed a simple similarity measure (Jaccard) to link entity mentions. Experimental results show that AMR captures contextual properties discriminative enough to make linking decisions, without the need for EL training data, and that system with AMR parsing output outperforms hand labeled traditional semantic roles as context representation for EL. Finally, we show promising preliminary results for using AMR to select sets of ``coherent'' entity mentions for collective entity linking.