-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
I will present a new theoretical perspective on two basic problems arising in stochastic optimization. The first one is arguably the most elementary problem in stochastic optimization: assume that one wants to find the maximum of function defined on a finite set, and that one is given a budget of n noisy evaluations. What is the best sequential allocation procedure for the evaluations?
The second problem that I will discuss is inspired from the issue of security analysis of a power system. We formalize this problem as follows: Let X be a set, and A a subset of X of interesting elements in X. One can access X only through requests to a finite set of probabilistic experts. More precisely, when one makes a request to the i^th expert, the latter draws independently at random a point from a fixed probability distribution P_i over X. One is interested in discovering rapidly as many elements of A as possible, by making sequential requests to the experts.