Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

This all-day tutorial introduces the audience to reinforcement learning. Prior experience in this area is not assumed. In the first half of this tutorial we will cover the foundations of reinforcement learning: Markov decision processes, value iteration, policy iteration, linear programming for solving an MDP, function approximation, model-free versus model-based learning, Q-learning, TD-learning, policy search, the likelihood ratio policy gradient, the policy gradient theorem, actor-critic, natural gradient and importance sampling. In the second half of this tutorial we will discuss example success stories and open problems.

Questions and Answers

You need to be logged in to be able to post here.