Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Research on insect-inspired flapping-wing micro-aerial vehicles (FWMAV) has grown steadily in the past decade, aiming to address unique challenges in morphological construction, force production, and control strategy. In particular, effective methods for motion control still remain an open problem. This paper analyzes the mechanical impedance properties of the joint and their role in rotation of the wing and force production. The results suggest that in addition to previously observed relationship between set point and drag [1], the average lift force is also related to the stiffness of the joint. Furthermore, as long as changes in impedance properties are small, net lift and drag production are almost independent. These relationships are the basis of ‘tunable impedance’ technique, a new approach to force/motion control in FWMAVs. A simple controller designed based on this method is used to simulate various flight maneuvers. The simulated MAV demonstrates exceptional performance, even in presence of measurement noise. This technique requires a fixed stroke profile for both wings, thus allowing to use a single stroke actuator – in a real MAV – with a bandwidth as low as the frequency of flapping. Impedance actuators also prove to have low bandwidth requirements.

Questions and Answers

You need to be logged in to be able to post here.