Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


This paper explores how Cloud Computing can facilitate grasping with shape uncertainty. We consider the most common robot gripper: a pair of thin parallel jaws, and a class of objects that can be modeled as extruded polygons. We model a conservative class of push-grasps that can enhance object alignment. The grasp planning algorithm takes as input an approximate object outline and Gaussian uncertainty around each vertex and center of mass. We define a grasp quality metric based on a lower bound on the probability of achieving force closure. We present a highly-parallelizable algorithm to compute this metric using Monte Carlo sampling. The algorithm uses Coulomb frictional grasp mechanics and a fast geometric test for conservative conditions for force closure. We run the algorithm on a set of sample shapes and compare the grasps with those from a planner that does not model shape uncertainty. We report computation times with single and multi-core computers and sensitivity analysis on algorithm parameters. We also describe physical grasp experiments using the Willow Garage PR2 robot.

Questions and Answers

You need to be logged in to be able to post here.