Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Advanced grasp control algorithms could benefit greatly from accurate tracking of the object as well as an accurate all-around knowledge of the system when the robot attempts a grasp. This motivates our study of the G-SL(AM)2 problem, in which two goals are simultaneously pursued: object tracking relative to the hand and estimation of parameters of the dynamic model. We view the G-SL(AM)2 problem as a filtering problem. Because of stick-slip friction and collisions between the object and hand, suitable dynamic models exhibit strong nonlinearities and jump discontinuities. This fact makes Kalman filters (which assume linearity) and extended Kalman filters (which assume differentiability) inapplicable, and leads us to develop a particle filter. An important practical problem that arises during grasping is occlusion of the view of the object by the robot’s hand. To combat the resulting loss of visual tracking fidelity, we designed a particle filter that incorporates tactile sensor data. The filter is evaluated off-line with data gathered in advance from grasp acquisition experiments conducted with a planar test rig. The results show that our particle filter performs quite well, especially during periods of visual occlusion, in which it is much better than the same filter without tactile data.

Questions and Answers

You need to be logged in to be able to post here.