Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


A major goal of current robotics research is to enable robots to become co-workers that collaborate with humans efficiently and adapt to changing environments or workflows. We present an approach utilizing the physical interaction capabilities of compliant robots with data-driven and model-free learning in a coherent system in order to make fast reconfiguration of redundant robots feasible. Users with no particular robotics knowledge can perform this task in physical interaction with the compliant robot, for example to reconfigure a work cell due to changes in the environment. For fast and efficient training of the respective mapping, an associative reservoir neural network is employed. It is embedded in the motion controller of the system, hence allowing for execution of arbitrary motions in task space. We describe the training, exploration and the control architecture of the systems as well as present an evaluation on the KUKA Light-Weight Robot. Our results show that the learned model solves the redundancy resolution problem under the given constraints with sufficient accuracy and generalizes to generate valid joint-space trajectories even in untrained areas of the workspace.

Questions and Answers

You need to be logged in to be able to post here.