Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


This paper presents a feedback controller that allows MABEL, a kneed, planar bipedal robot, with 1 m-long legs, to accommodate an abrupt 20 cm decrease in ground height. The robot is provided information on neither where the step down occurs, nor by how much. After the robot has stepped off a raised platform, however, the height of the platform can be estimated from the lengths of the legs and the angles of the robot’s joints. A real-time control strategy is implemented that uses this on-line estimate of step-down height to switch from a baseline controller, that is designed for flat-ground walking, to a second controller, that is designed to attenuate torso oscillation resulting from the step-down disturbance. After one step, the baseline controller is re-applied. The control strategy is developed on a simplified model of the robot and then verified on a more realistic model before being evaluated experimentally. The paper concludes with experimental results showing MABEL (blindly) stepping off a 20 cm high platform.

Questions and Answers

You need to be logged in to be able to post here.