Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

We study surrogate losses in the context of cost-sensitive classification with example-dependent costs, a problem also known as regression level set estimation. We give sufficient conditions on the surrogate loss for the existence of a surrogate regret bound. Such bounds imply that as the surrogate risk tends to its optimal value, so too does the expected misclassification cost. Our sufficient conditions encompass example-dependent versions of the hinge, exponential, and other common losses. These results provide theoretical justification for some previously proposed surrogate-based algorithms, and suggests others that have not yet been developed.

Questions and Answers

You need to be logged in to be able to post here.