Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

For a pair of parameters alpha \ge 1, beta \ge 1, a spanning tree T of a weighted undirected n-vertex graph G = (V,E,w) is called an (alpha,beta)-shallow-light tree (shortly, (alpha,beta)-SLT) of G with respect to a designated vertex rt in V if (1) it approximates all distances from rt to other vertices up to a factor of alpha, and (2) its weight is at most beta times the weight of the minimum spanning tree MST(G) of G. The parameter alpha (respectively, beta) is called the root-distortion (resp., lightness) of the tree T. Shallow-light trees (SLTs) constitute a fundamental graph structure, with numerous theoretical and practical applications. In particular, they were used for constructing spanners, in network design, for VLSI-circuit design, for various data gathering and dissemination tasks in wireless and sensor networks, in overlay networks, and in the message-passing model of distributed computing. Tight tradeoffs between the parameters of SLTs were established by Awerbuch, Baratz and Peleg, PODC'90 and Khuller, Raghavachari and Young, SODA'93. They showed that for any eps > 0 there always exist (1+eps,O(1/eps))-SLTs, and that the upper bound beta = O(1/eps) on the lightness of SLTs cannot be improved. In this paper we show that using Steiner points one can build SLTs with logarithmic lightness, i.e., beta = O(log 1/eps). This establishes an \emph{exponential separation} between spanning SLTs and Steiner ones. One particularly remarkable point on our tradeoff curve is eps = 0. In this regime our construction provides a \emph{shortest-path tree} with weight at most O(log n) * w(MST(G)). Moreover, we prove matching lower bounds that show that all our results are tight up to constant factors. Finally, on our way to these results we settle (up to constant factors) a number of open questions that were raised by Khuller et al. in SODA'93.

Questions and Answers

You need to be logged in to be able to post here.