-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
It has been recently shown that reconstructing an isometric surface from a single 2D input image matched to a 3D template was a well-posed problem. This however does not tell us how reconstruction algorithms will behave in practical conditions, where the amount of perspective is generally small and the projection thus behaves like weak-perspective or orthography. We here bring answers to what is theoretically recoverable in such imaging conditions, and explain why existing convex numerical solutions and analytical solutions to 3D reconstruction may be unstable. We then propose a new algorithm which works under all imaging conditions, from strong to loose perspective. We empirically show that the gain in stability is tremendous, bringing our results close to the iterative minimization of a statisticallyoptimal cost. Our algorithm has a low complexity, is simple and uses only one round of linear least-squares.