-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Controlling the interaction between the robot and living soft tissues has became an important issue as the number of robots inside the operating room increases. Many research works have been done in order to control this interaction. Nowadays, researches are running in force control for helping surgeons in medical procedures such as motion compensation in beating heart surgeries and tele-operation systems with haptic feedback. The viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In order to increase the performance of a model based force control, this work presents a force control scheme using Active Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical analysis and its performance was evaluated and compared with a control scheme based on a classical elastic model through experiments, showing that a more realistic model can increases the performance of the force control.