Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


In this paper, we propose two snap-stabilizing distributed algorithms for the committee coordination problem. In this problem, a committee consists of a set of processes and committee meetings are synchronized, so that each process participates in at most one committee meeting at a time. Snap-stabilization is a versatile technique allowing to design algorithms that ef?ciently tolerate transient faults. Indeed, after a ?nite number of such faults (e.g. memory corruptions, message losses, etc), a snapstabilizing algorithm immediately operates correctly, without any external intervention. We design snap-stabilizing committee coordination algorithms enriched with some desirable properties related to concurrency, (weak) fairness, and a stronger synchronization mechanism called 2-Phase Discussion Time. From previous papers, we know that (1) in the general case, (weak) fairness cannot be achieved in the committee coordination, and (2) it becomes feasible provided that each process waits for meetings in?nitely often. Nevertheless, we show that even under this latter assumption, it is impossible to implement a fair solution that allows maximal concurrency. Hence, we propose two orthogonal snap-stabilizing algorithms, each satisfying 2-phase discussion time, and either maximal concurrency or fairness. The algorithm implementing fairness requires that every process waits for meetings in?nitely often. Moreover, for this algorithm, we introduce and evaluate a new ef?ciency criterion called the degree of fair concurrency. This criterion shows that even if it does not satisfy maximal concurrency, our snap-stabilizing fair algorithm still allows a high level of concurrency

Questions and Answers

You need to be logged in to be able to post here.