Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Dialogue systems that support users in complex problem solving must interpret user utterances within the context of a dynamically changing, user-created problem solving artifact. This paper presents a novel approach to semantic grounding of noun phrases within tutorial dialogue for computer programming. Our approach performs joint segmentation and labeling of the noun phrases to link them to attributes of entities within the problem-solving environment. Evaluation results on a corpus of tutorial dialogue for Java programming demonstrate that a Conditional Random Field model performs well, achieving an accuracy of 89.3% for linking semantic segments to the correct entity attributes. This work is a step toward enabling dialogue systems to support users in increasingly complex problem-solving tasks.

Questions and Answers

You need to be logged in to be able to post here.