Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Dynamic manipulations require attaining high velocities at specified configurations, all the while obeying geometric and dynamic constraints. This paper presents a motion planner that constructs a trajectory that passes at an intermediate state through a dynamic objective region, which is comprised of a certain lower dimensional submanifold in the configuration/velocity state space, and then returns to rest. Planning speed and reliability is greatly improved using optimizations based on the fact that ramp-up and ramp-down subproblems are coupled by the choice of intermediate state, and that very few (often less than 1%) intermediate states yield feasible solution trajectories. Simulation experiments demonstrate that our method quickly generates trajectories for a 6-DOF industrial manipulator throwing a small object.

Questions and Answers

You need to be logged in to be able to post here.