-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
In 1985 C. Borell proved that under the Gaussian measure, half-spaces are the most stable sets. While a number of proofs of this result were discovered over the years, it was not known if half-spaces are the unique optimizers. The talk will survey recent results with Joe Neeman establishing that half-spaces are uniquely the most noise stable sets. Furthermore, we prove a quantitative dimension independent versions of uniqueness, showing that a set which is almost optimally noise stable must be close to a half-space. Our work answers a question of Ledoux from 1994 and has numerous applications in theoretical computer science and social choice.