Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Recently, autonomous miniature airships have become a growing research field. Whereas airships are attractive as they can move freely in the three-dimensional space, their high-dimensional state space and the restriction to small and lightweight sensors are demanding constraints with respect to self-localization. Furthermore, their complex second-order kinematics makes the estimation of their pose and velocity through dead reckoning odometry difficult and imprecise. In this paper, we consider the problem of estimating the velocity of a miniature blimp with lightweight air flow sensors. We present a probabilistic sensor model that accurately models the uncertainty of the flow sensors and thus allows for robust state estimation using a particle filter. In experiments carried out with a real airship we demonstrate that our method precisely estimates the velocity of the blimp and outperforms the standard velocity estimates of the motion model as applied in many existent autonomous blimp navigation systems.

Questions and Answers

You need to be logged in to be able to post here.