Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Conventionally, tendon-driven manipulators implement some force-based controller using either tension feedback or dynamic models of the actuator. The force control allows the system to maintain proper tensions on the tendons. In some cases, whether it is due to the lack of tension feedback or actuator torque control, a purely position-based controller is needed. This work compares three position controllers for tendon-driven manipulators that implement a nested actuator position controller. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension control, the controller nominally maintains the internal tension on the tendons through a range-space constraint on the actuator positions. These control laws are validated experimentally on the Robonaut-2 humanoid hand.

Questions and Answers

You need to be logged in to be able to post here.