Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


We analyze a method for nonparametric density estimation that exhibits robustness to contamination of the training sample. This method achieves robustness by combining a traditional kernel density estimator (KDE) with ideas from classical M-estimation. The KDE based on a Gaussian kernel is interpreted as a sample mean in the associated reproducing kernel Hilbert space (RKHS). This mean is estimated robustly through the use of a robust loss, yielding the so-called robust kernel density estimator (RKDE). This robust sample mean can be found via a kernelized iteratively re-weighted least squares (IRWLS) algorithm. Our contributions are summarized as follows. First, we present a representer theorem for the RKDE, which gives an insight into the robustness of the RKDE. Second, we provide necessary and sufficient conditions for kernel IRWLS to converge to the global minimizer, in the Gaussian RKHS, of the objective function defining the RKDE. Third, characterize and provide a method for computing the influence function associated with the RKDE. Fourth, we illustrate the robustness of the RKDE through experiments on several data sets.

Questions and Answers

You need to be logged in to be able to post here.