Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


The local Hamiltonian problem plays the equivalent role of SAT in quantum complexity theory. Understanding the complexity of the intermediate case in which the constraints are quantum but all local terms in the Hamiltonian commute, is of importance for conceptual, physical and computational complexity reasons. Bravyi and Vyalyi showed in 2003 \cite{BV}, using a clever application of the representation theory of C*-algebras, that if the terms in the Hamiltonian are all two-local, the problem is in NP, and the entanglement in the ground states is local. The general case remained open since then. In this paper we extend this result beyond the two-local case, to the case of three-qubit interactions. We then extend our results even further, and show that NP verification is possible for three-wise interaction between qutrits as well, as long as the interaction graph is planar and also "nearly Euclidean" in some well-defined sense. The proofs imply that in all such systems, the entanglement in the ground states is local. These extensions imply an intriguing sharp transition phenomenon in commuting Hamiltonian systems: the ground spaces of 3-local "physical" systems based on qubits and qutrits are diagonalizable by a basis whose entanglement is highly local, while more involved interactions (the particle dimensionality or the locality of the interaction is larger) can already exhibit topological order; In particular, for those parameters, there exist Hamiltonians all of whose groundstates have entanglement which spreads over scales proportional to the size of the system, such as Kitaev's Toric Code system. This has a direct implication to the developing theory of Topological Order, since it shows that one cannot improve on the parameters to construct topological order systems based on commuting Hamiltonians. This is of particular interest in light of the recent proofs by Bravyi, Hastings and Michalakis

Questions and Answers

You need to be logged in to be able to post here.