Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

The Lov'{a}sz Local Lemma (LLL) is a powerful tool that gives sufficient conditions for avoiding all of a given set of ``bad'' events, with positive probability. A series of results have provided algorithms to efficiently construct structures whose existence is non-constructively guaranteed by the LLL, culminating in the recent breakthrough of Moser & Tardos for the full asymmetric LLL. We show that the output distribution of the Moser-Tardos algorithm well-approximates the emph{conditional LLL-distribution} -- the distribution obtained by conditioning on all bad events being avoided. We show how a known bound on the probabilities of events in this distribution can be used for further probabilistic analysis and give new constructive and non-constructive results.

We also show that when an LLL application provides a small amount of slack, the number of resamplings of the Moser-Tardos algorithm is nearly linear in the number of underlying independent variables (not events!), and can thus be used to give efficient constructions in cases where the underlying proof applies the LLL to super-polynomially many events. Even in cases where finding a bad event that holds is computationally hard, we show that applying the algorithm to avoid a polynomial-sized ``core'' subset of bad events leads to a desired outcome with high probability. This is shown via a simple union bound over the probabilities of non-core events in the conditional LLL-distribution, and automatically leads to simple and efficient Monte-Carlo (and in most cases $RNC$) algorithms.

We demonstrate this idea on several applications. We give the first constant-factor approximation algorithm for the Santa Claus problem by making an LLL-based proof of Feige constructive. We provide Monte Carlo algorithms for acyclic edge coloring, non-repetitive graph colorings, and Ramsey-type graphs. In all these applications the algorithm falls directly out of the non-constructive LLL-based proof. Our algorithms are very simple, often provide bet

Questions and Answers

You need to be logged in to be able to post here.