-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
This paper presents a model of needle tissue interaction forces that a rigid suture needle experiences during surgical suturing. The needle-tissue interaction forces are modeled as the sum of lumped parameters. The model has three main components; friction, tissue compression, and cutting forces. The tissue compression force uses the area that the needle sweeps out during a suture to estimate both the force magnitude and force direction. The area that the needle sweeps out is a direct result of driving the needle in a way that does not follow the natural curve of the needle. The friction force is approximated as a static friction force along the shaft of the needle. The cutting force acts only on the needle tip. The resulting force and torque model is experimentally validated using a tissue phantom. These results indicate that the proposed lumped parameter model is capable of accurately modeling the forces experienced during a suture.