-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Catheter-based cardiac ablation is an interventional treatment for heart arrhythmias. Pull-wire steerable catheters are guided to the heart chambers through the vasculature in order to deliver energy to destroy faulty electrical pathways in the heart. The effectiveness of this treatment is dependent on the accuracy of positioning the catheter tip at the target location and also on maintaining contact with the target while the heart is beating. Therefore, it is desirable to perform hybrid force/position control of the catheter tip. We have studied the problem of modeling the distal part of a steerable catheter using beam theory and have developed and validated a static force-deflection model through extensive experiments. It is shown that the model can estimate the shape of the bending section of a catheter using force information and without requiring any knowledge of the catheter’s internal structure.