Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

The paper presents the design and analysis of a dexterous micro-gripper with two fingers and each finger has 2-DOF translational movement function. The two fingers can move independently in hundreds of microns' range, and can cooperate with each other to realize complex operation for micro objects. The mobility characteristics and the inverse parallel kinematic model of a single finger are analyzed by resorting to screw theory and compliance and stiffness matrix method, which are validated by finite-element analysis (FEA). Both FEA and the theoretical model have well validated the movement of the fingers moving in translational way, the designed micro gripper can realize a lot of complex functions. Properly selecting the amplification ratio and the stroke of the PZT, we can mount the gripper onto a positioning stage to realize a larger motion range, which will make it be widely used in micro parts assembly and bio-operation systems.

Questions and Answers

You need to be logged in to be able to post here.