Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Delay-tolerant networks (DTNs) are characterized by a possible absence of end-to-end communication routes at any instant. In most cases, however, a form of connectivity can be established over time and space. This particularity leads to consider the relevance of a given route not only in terms of hops (topological length), but also in terms of time (temporal length). The problem of measuring temporal distances between individuals in a social network was recently addressed, based on a posteriori analysis of interaction traces. This paper focuses on the distributed version of this problem, asking whether every node in a network can know precisely and in real time how out-of-date it is with respect to every other. Answering af?rmatively is simple when contacts between the nodes are punctual, using the temporal adaptation of vector clocks provided in (Kossinets et al., 2008). It becomes more dif?cult when contacts have a duration and can overlap in time with each other. We demonstrate that the problem remains solvable with arbitrarily long contacts and non-instantaneous (though invariant and known) propagation delays on edges. This is done constructively by extending the temporal adaptation of vector clocks to non-punctual causality. The second part of the paper discusses how the knowledge of temporal lags could be used as a building block to solve more concrete problems, such as the construction of foremost broadcast trees or network backbones in periodically-varying DTNs.

Questions and Answers

You need to be logged in to be able to post here.