-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
High-energy physicists try to decompose matter into its most fundamental pieces by colliding particles at extreme energies. But to extract clues about the structure of matter from these collisions is not a trivial task, due to the incomplete data we can gather regarding the collisions, the subtlety of the signals we seek and the large rate and dimensionality of the data. These challenges are not unique to high energy physics, and there is the potential for great progress in collaboration between high energy physicists and machine learning experts. I will describe the nature of the physics problem, the challenges we face in analyzing the data, the previous successes and failures of some ML techniques, and the open challenges.