Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets.

Questions and Answers

You need to be logged in to be able to post here.