-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
We provide a novel algorithm to approximately factor large matrices with millions of rows, millions of columns, and billions of nonzero elements. Our approach rests on stochastic gradient descent (SGD), an iterative stochastic optimization algorithm. Based on a novel ``stratified'' variant of SGD, we obtain a new matrix-factorization algorithm, called DSGD, that can be fully distributed and run on web-scale datasets using, e.g., MapReduce. DSGD can handle a wide variety of matrix factorizations and has good scalability properties.