-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Learning about new objects that a robot sees for the first time is a difficult problem because it is not clear how to define the concept of object in general terms. In this paper we consider as objects those physical entities that are comprised of features which move consistently when the robot acts upon them. Among the possible actions that a robot could apply to a hypothetical object, pushing seems to be the most suitable one due to its relative simplicity and general applicability. We propose a methodology to generate and apply pushing actions to hypothetical objects. A probing push causes visual features to move, which enables the robot to either confirm or reject the initial hypothesis about existence of the object. Furthermore, the robot can discriminate the object from the background and accumulate visual features that are useful for training of state of the art statistical classifiers such as bag of features.