Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

We pose unseen view synthesis as a probabilistic tensor completion problem. Given images of people organized by their rough viewpoint, we form a 3D appearance tensor indexed by images (pose examples), viewpoints, and image positions. After discovering the low-dimensional latent factors that approximate that tensor, we can impute its missing entries. In this way, we generate novel synthetic views of people´┐Żeven when they are observed from just one camera viewpoint. We show that the inferred views are both visually and quantitatively accurate. Furthermore, we demonstrate their value for recognizing actions in unseen views and estimating viewpoint in novel images. While existing methods are often forced to choose between data that is either realistic or multi-view, our virtual views offer both, thereby allowing greater robustness to viewpoint in novel images.

Questions and Answers

You need to be logged in to be able to post here.