-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
This paper proposes a method for estimating the 3D body shape of a person with robustness to clothing. We formulate the problem as optimization over the manifold of valid depth maps of body shapes learned from synthetic training data. The manifold itself is represented using a novel data structure, a Multi-Resolution Manifold Forest (MRMF), which contains vertical edges between tree nodes as well as horizontal edges between nodes across trees that correspond to overlapping partitions. We show that this data structure allows both efficient localization and navigation on the manifold for on-the-fly building of local linear models (manifold charting). We demonstrate shape estimation of clothed users, showing significant improvement in accuracy over global shape models and models using pre-computed clusters. We further compare the MRMF with alternative manifold charting methods on a public dataset for estimating 3D motion from noisy 2D marker observations, obtaining state-of-the-art results.