Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Yao's garbled circuit construction transforms a boolean circuit $C:\{0,1\}^n\to\{0,1\}^m$ into a ``garbled circuit'' $\hC$ along with $n$ pairs of $k$-bit keys, one for each input bit, such that $\hC$ together with the $n$ keys corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$. The garbled circuit construction is a central tool for constant-round secure computation and has several other applications. Motivated by these applications, we suggest an efficient arithmetic variant of Yao's original construction. Our construction transforms an arithmetic circuit $C : \Z^n\to\Z^m$ over integers from a bounded (but possibly exponential) range into a garbled circuit $\hC$ along with $n$ affine functions $L_i : \Z\to \Z^k$ such that $\hC$ together with the $n$ integer vectors $L_i(x_i)$ reveal $C(x)$ and no additional information about $x$. The security of our construction relies on the intractability of the decisional variant of the learning with errors (LWE) problem.

Questions and Answers

You need to be logged in to be able to post here.