Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


It is known that bipedal robots with passive compliant structures have obvious advantages over stiff robots, as they are able to handle the potential energy management. Therefore, this paper is aimed at presenting a jumping pattern generation method that takes advantage of this property via the utilization of the ankle joint resonance frequency, which is of special importance. To begin with, the resonance frequency is determined through a system identification procedure on our actual robot. Consequentially, the vertical component of the CoM is generated via a periodic function in which the resonance frequency is employed. The horizontal component of the CoM is obtained using the ZMP criterion to guarantee the dynamic balance. Having analytically generated the necessary elements of the CoM trajectory, joint motions are computed with the help of translational and angular momenta constraints. In order to validate the method, two legged jumping experiments are conducted on our actual compliant robot. In conclusion, we satisfactorily observed repetitive, continuous, and dynamically equilibrated jumping cycles with successful landing phases.

Questions and Answers

You need to be logged in to be able to post here.