-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
In this paper we introduce a new distance for robustly matching vectors of 3D rotations. A special representation of 3D rotations, which we coin full-angle quaternion (FAQ), allows us to express this distance as Euclidean. We apply the distance to the problems of 3D shape recognition from point clouds and 2D object tracking in color video. For the former, we introduce a hashing scheme for scale and translation which outperforms the previous state-of-the-art approach on a public dataset. For the latter, we incorporate online subspace learning with the proposed FAQ representation to highlight the benefits of the new representation.