Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Tumbling robots provide the potential to produce increased mobility on smaller scales with respect to their size and/or complexity. In this paper we explore the frictional interactions between a tumbling robot and the terrain while climbing a single vertical step to illustrate the advantages of tumbling. We present a set of parametric configuration equations that express the relationships between the robot’s configuration parameters (morphology, geometry, mass, etc.), the environmental/task parameters (step geometry, available coefficients of friction, etc.), and the performance parameters (step height). The required body coefficient of friction is examined in detail for idealized tumbling and wheel-tail robots. We further illustrate the results of our analysis by experimentally determining optimal tumbling and wheel-tail configurations for a given step size and body (wheel) friction.

Questions and Answers

You need to be logged in to be able to post here.