-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
State-of-the-art Multi-View Stereo (MVS) algorithms deliver dense depth maps or complex meshes with very high detail, and redundancy over regular surfaces. In turn, our interest lies in an approximate, but light-weight method that is better to consider for large-scale applications, such as urban scene reconstruction from ground-based images. We present a novel approach for producing dense reconstructions from multiple images and from the underlying sparse Structure-from-Motion (SfM) data in an efficient way. To overcome the problem of SfM sparsity and textureless areas, we assume piecewise planarity of man-made scenes and exploit both sparse visibility and a fast over-segmentation of the images. Reconstruction is formulated as an energy-driven, multi-view plane assignment problem, which we solve jointly over superpixels from all views while avoiding expensive photoconsistency computations. The resulting planar primitives -- defined by detailed superpixel boundaries -- are computed in about 10 seconds per image.