-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
We propose the use of neural networks to model source-side preordering for faster and better statistical machine translation. The neural network trains a logistic regression model to predict whether two sibling nodes of the source-side parse tree should be swapped in order to obtain a more monotonic parallel corpus, based on samples extracted from the word-aligned parallel corpus. For multiple language pairs and domains, we show that this yields the best reordering performance against other state-of-the-art techniques, resulting in improved translation quality and very fast decoding.