Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. Our approach achieves the state-of-the-art results when tested on the current most challenging benchmarks. Furthermore, because extracting and regressing local binary features is computationally very cheap, our system is much faster than previous methods. It achieves over 3,000 fps on a desktop or 300 fps on a mobile phone for locating a few dozens of landmarks.

Questions and Answers

You need to be logged in to be able to post here.