-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
Research on entity linking has considered a broad range of text, including newswire, blogs and web documents in multiple languages. However, the problem of entity linking for spoken language remains unexplored. Spoken language obtained from automatic speech recognition systems poses different types of challenges for entity linking; transcription errors can distort the context, and named entities tend to have high error rates. We propose features to mitigate these errors and evaluate the impact of ASR errors on entity linking using a new corpus of entity linked broadcast news transcripts.