Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


The introduction of multicore processors on desktops and other personal computing platforms has given rise to multiple interesting end-user application possibilities. One important trend is the increased presence of resource hungry applications like gaming and multimedia applications. One of the key distinguishing factors of these applications is that they are amenable to variable semantics (ie, multiple possibilities of results) unlike traditional applications wherein a ?xed, unique answer is expected. For example, varying degrees of image processing improves picture quality; different model complexities used in game physics allow different degrees of realism during game play, and so on. The goal of this paper is to demonstrate that scalable semantics in applications such as video games can be enriched with optional tasks that can be launched and thus adapt to the amount of available resources at runtime. We propose a C/C++ API that allows the programmer to de?ne how the current semantics of a program can be opportunistically enriched, as well as the underlying runtime system that orchestrates the different computations We show how this infrastructure can be used to enrich a well known game called Quake 3. Our results show that it is possible to perform signi?cant enrichment without degrading the application’s performance by utilizing additional cores.

Questions and Answers

You need to be logged in to be able to post here.