-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
When building vision systems that predict structured objects such as image segmentations or human poses, a crucial concern is performance under task-specific evaluation measures (e.g. Jaccard Index or Average Precision). An ongoing research challenge is to optimize predictions so as to maximize performance on such complex measures. In this work, we present a simple meta-algorithm that is surprisingly effective � Empirical Min Bayes Risk. EMBR takes as input a pre-trained model that would normally be the final product and learns three additional parameters so as to optimize performance on the complex high-order task-specific measure. We demonstrate EMBR in several domains, taking existing state-of-the-art algorithms and improving performance up to ~7%, simply with three extra parameters.