Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Rapid and consistent turning of running legged robots on surfaces with moderate friction is challenging due to leg slip and uncertain dynamics. A tail is proposed as a method to effect turns at higher yaw frequencies than can be obtained by differential velocity drive of alternate sides. Here we introduce a 100 mm scale dynamic robot - OctoRoACH - with differential-drive steering and a low-mass tail to investigate issues of yaw rate control. The robot without tail is under-actuated with only 2 drive motors and mass of 35 grams including all battery and control electronics. For some surface conditions, OctoRoACH can maintain heading or turning rate using only leg velocity control, and a basic rate-gyro-based heading control system can respond to disturbances, with a closed-loop bandwidth of approximately 1 Hz. Using a modified off-the-shelf servo for the tail drive, the robot responds to turning commands at 4 Hz.

Questions and Answers

You need to be logged in to be able to post here.