Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees.

Questions and Answers

You need to be logged in to be able to post here.