Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

We propose a simple yet effective $L_0$-regularized prior based on intensity and gradient for text image deblurring. The proposed image prior is motivated by observing distinct properties of text images. Based on this prior, we develop an efficient optimization method to generate reliable intermediate results for kernel estimation. The proposed method does not require any complex filtering strategies to select salient edges which are critical to the state-of-the-art deblurring algorithms. We discuss the relationship with other deblurring algorithms based on edge selection and provide insight on how to select salient edges in a more principled way. In the final latent image restoration step, we develop a simple method to remove artifacts and render better deblurred images. Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art text image deblurring methods. In addition, we show that the proposed method can be effectively applied to deblur low-illumination images.

Questions and Answers

You need to be logged in to be able to post here.