Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Many manipulation planning problems involve several related sub-problems, such as the selection of grasping points on an object, choice of hand posture, and determination of the arm’s configuration and evolving trajectory. Traditionally, these planning sub-problems have been handled separately, potentially leading to sub-optimal, or even infeasible, combinations of the individually determined solutions. This paper formulates the combined problem of grasp contact selection, grasp force optimization, and manipulator arm/hand trajectory planning as a problem in optimal control. That is, the locally optimal trajectory for the manipulator, hand mechanism, and contact locations are determined during the pre-grasping, grasping, and subsequent object transport phase. Additionally, a barrier function approach allows for non-feasible grasps to be optimized, enlarging the region of convergence for the algorithm. A simulation of a simple planar object manipulation task is used to illustrate and validate the approach.

Questions and Answers

You need to be logged in to be able to post here.