Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.

Description

Image-based classification of histology sections plays an important role in predicting clinical outcomes. However this task is very challenging due to the presence of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state). In the field of biomedical imaging, for the purposes of visualization and/or quantification, different stains are typically used for different targets of interest (e.g., cellular/subcellular events), which generates multi-spectrum data (images) through various types of microscopes and, as a result, provides the possibility of learning biological-component-specific features by exploiting multispectral information. We propose a multispectral feature learning model that automatically learns a set of convolution filter banks from separate spectra to efficiently discover the intrinsic tissue morphometric signatures, based on convolutional sparse coding (CSC). The learned feature representations are then aggregated through the spatial pyramid matching framework (SPM) and finally classified using a linear SVM. The proposed system has been evaluated using two large-scale tumor cohorts, collected from The Cancer Genome Atlas (TCGA). Experimental results show that the proposed model 1) outperforms systems utilizing sparse coding for unsupervised feature learning (e.g., PSDSPM [5]); 2) is competitive with systems built upon features with biological prior knowledge (e.g., SMLSPM [4]).

Questions and Answers

You need to be logged in to be able to post here.