Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


In this paper we describe a vision-based algorithm to control a vertical-takeoff-and-landing unmanned aerial vehicle while tracking and landing on a moving platform. Specifically, we use image-based visual servoing (IBVS) to track the platform in two-dimensional image space and generate a velocity reference command used as the input to an adaptive sliding mode controller. Compared with other vision-based control algorithms that reconstruct a full three-dimensional representation of the target, which requires precise depth estimation, IBVS is computationally cheaper since it is less sensitive to the depth estimation allowing for a faster method to obtain this estimate. To enhance velocity tracking of the sliding mode controller, an adaptive rule is described to account for the ground effect experienced during the maneuver. Finally, the IBVS algorithm integrated with the adaptive sliding mode controller for tracking and landing is validated in an experimental setup using a quadrotor.

Questions and Answers

You need to be logged in to be able to post here.