-
Upload Video
videos in mp4/mov/flv
close
Upload video
Note: publisher must agree to add uploaded document -
Upload Slides
slides or other attachment
close
Upload Slides
Note: publisher must agree to add uploaded document -
Feedback
help us improve
close
Feedback
Please help us improve your experience by sending us a comment, question or concern
Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.
Description
While intrinsically motivated learning agents hold considerable promise to overcome limitations of more supervised learning systems, quantitative evaluation and theoretical analysis of such agents are difficult. We propose to consider a restricted setting for autonomous learning where systematic evaluation of learning performance is possible. In this setting the agent needs to learn to navigate in a Markov Decision Process where extrinsic rewards are not present or are ignored. We present a learning algorithm for this scenario and evaluate it by the amount of exploration it uses to learn the environment.